output GSCA (Generalized Struktural Component Analysis)

Wednesday, August 24, 2011
Model Fit
FIT 0.534
AFIT 0.525
NPAR 36


Measurement Model
----------------------------------------------------------------------------------------------
Variable Loading Weight SMC
  Estimate SE CR Estimate SE CR Estimate SE CR
 
LV_1 AVE = 0.616, Alpha =0.832
prod_3 0.773 0.060 12.96* 0.231 0.031 7.35* 0.598 0.090 6.66*
prod_4 0.812 0.043 18.73* 0.256 0.028 9.22* 0.659 0.070 9.47*
prod_5 0.833 0.033 25.38* 0.273 0.026 10.37* 0.693 0.054 12.78*
prod_6 0.822 0.045 18.2* 0.306 0.031 9.73* 0.676 0.074 9.18*
prod_7 0.673 0.075 8.93* 0.200 0.030 6.72* 0.452 0.098 4.63*
 
LV_2 AVE = 0.646, Alpha =0.776
prof_1 0.493 0.138 3.59* 0.213 0.053 4.03* 0.243 0.127 1.92
prof_2 0.909 0.022 41.74* 0.347 0.027 12.61* 0.826 0.039 21.04*
prof_3 0.887 0.028 32.15* 0.329 0.024 13.72* 0.786 0.049 16.16*
prof_4 0.854 0.038 22.29* 0.337 0.026 12.98* 0.729 0.065 11.24*
 
LV_3 AVE = 0.000, Alpha =0.686
mo_1 0 0 0 -0.287 0.269 1.06 0 0 0
mo_2 0 0 0 0.278 0.296 0.94 0 0 0
mo_3 0 0 0 0.552 0.344 1.6 0 0 0
mo_4 0 0 0 0.660 0.287 2.3* 0 0 0
mo_5 0 0 0 -0.612 0.243 2.52* 0 0 0
 
LV_4 AVE = 0.671, Alpha =0.867
kep_1 0.868 0.054 16.05* 0.262 0.024 10.99* 0.753 0.090 8.34*
kep_2 0.795 0.113 7.05* 0.236 0.024 9.64* 0.632 0.168 3.76*
kep_3 0.887 0.044 20.16* 0.268 0.021 12.98* 0.787 0.077 10.23*
kep_4 0.851 0.044 19.47* 0.248 0.021 11.73* 0.723 0.073 9.95*
kep_5 0.676 0.131 5.14* 0.201 0.036 5.55* 0.457 0.168 2.72*
CR* = significant at .05 level
----------------------------------------------------------------------------------------------
Structural Model
Path Coefficients
  Estimate SE CR
LV_2->LV_1 0.618 0.091 6.81*
LV_3->LV_1 0.282 0.076 3.69*
LV_4->LV_1 -0.104 0.071 1.47
CR* = significant at .05 level
----------------------------------------------------------------------------------------------
R square of Latent Variable
LV_1 0.598
LV_2 0
LV_3 0
LV_4 0
----------------------------------------------------------------------------------------------
Means Scores of Latent Variables
LV_1 8.738
LV_2 8.625
LV_3 9.079
LV_4 8.252
----------------------------------------------------------------------------------------------
Correlations of Latent Variables (SE)
  LV_1 LV_2 LV_3 LV_4
LV_1 1 0.730 (0.042)* 0.584 (0.116)* 0.171 (0.114)
LV_2 0.730 (0.042)* 1 0.525 (0.160)* 0.346 (0.108)*
LV_3 0.584 (0.116)* 0.525 (0.160)* 1 0.217 (0.165)
LV_4 0.171 (0.114) 0.346 (0.108)* 0.217 (0.165) 1
* significant at .05 level  
LV : Variabel laten

FIT          : pengukuran overall model fit
AFIT  : mirip dengan FIT Cuma dipengaruhi kompleksitas model.
N Par : parameter bebas termasuk koefisien loading (c) , koefisien bobot (w), dan koefisien jalur (b) .
Estimasi Loading (c)                : estimasi parameter yang menghubungkan variabel laten ke indikator
Estimasi weight  (w)                : bobot komponen yang mengestimasi score variabel laten
Estimasi Part Coeffisient (b) : estimasi koefisien jalur  yang menghubungkan hubungan antar variabel laten.
SMC : square Estimasi Loading 

0 comments: